Appendix III Factor of Liquefaction Resistance, F_L and Index of Liquefaction Potential, $P_L^{(7)}$

The ability of a soil element at an arbitrary depth to resist liquefaction can be expressed by the Factor of Liquefaction Resistance, F_L , as follows:

$$F_{L} = \frac{R}{L} \tag{1}$$

Where R is in-situ resistance (or undrained cyclic strength) of soil element to dynamic loads and can be simply evaluated, based on undrained cyclic shear test results, as follows:

$$R = 0.0882 \sqrt{\frac{N}{\sigma_{v}' + 0.7}} + 0.19,$$
 for 0.02 mm $\leq D_{50} \leq 0.05$ mm (2a)

$$R = 0.0882 \sqrt{\frac{N}{\sigma_{V}' + 0.7}} + 0.225 \log_{10} \frac{0.35}{D_{50}}$$

for
$$0.05 \text{ mm} \le D_{50} \le 0.6 \text{ mm}$$
 (2b)

$$R = 0.0882 \sqrt{\frac{N}{\sigma_{\text{v}}' + 0.7}} - 0.05,$$
 for $0.6 \text{ mm} \le D_{50} \le 1.5 \text{ mm}$ (2c)

where N is the number of blows in the standard penetration test, σ_{V}' is the effective overburden pressure (in kg/cm²), and D_{50} is the mean particle diameter (in mm). L in eq. (1) is the dynamic load induced in the soil element by a seismic motion, and can be estimated by

$$L = \frac{\tau_{\text{max}}}{\sigma_{\text{v}}'} = \frac{\alpha_{\text{smax}}}{g} - \frac{\sigma_{\text{v}}}{\sigma_{\text{v}}'} r_{\text{d}} = k_{\text{S}} \frac{\sigma_{\text{v}}}{\sigma_{\text{v}}'} r_{\text{d}}$$
 (3)

Where τ_{max} is the maximum shear stress (in kg/cm²), α_{smax} is the maximum acceleration on the ground

surface (in gal), g is the acceleration of gravity (= 980 gal), σ_V is the total overburden pressure (in kg/cm²), ks is the seismic coefficient, and r_d , the reduction factor for dynamic shear stress, is as follows:

$$r_{d} = 1 - 0.015 Z \tag{4}$$

Where Z is the depth in meters.

The Index of Liquefaction Potential P_L can be introduced to express the severity of liquefaction as,

$$P_{L} = \int_{0}^{20} \mathbf{F} \cdot \mathbf{W} (Z) dZ$$
 (5)

in which $F=1-F_L$ for $F_L \leq 1.0$ and F=0 for $F_L > 1.0$, and W(Z)=10-0.5Z (Z in meter), as illustrated in Figure III-1. For the case of $F_L=0.0$ for the entire range from Z=0 to Z=20 m, P_L becomes 100, and for the case of $F_L \geq 1.0$ for the entire range from Z=0 to Z=20 m, P_L becomes 0.0.

Liquefaction Potential, P_L